
Silona Bonewald

How to Launch Collaboration
Within Your Enterprise

Understanding
the InnerSource
Checklist

Understanding
the InnerSource

Compliments of

Silona Bonewald

Understanding the
InnerSource Checklist

How to Launch Collaboration Within
Your Enterprise

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-98692-9

[LSI]

Understanding the InnerSource Checklist
by Silona Bonewald

Copyright © 2017 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Melanie Yarbrough
Copyeditor: Octal Publishing Services
Proofreader: Charles Roumeliotis

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

May 2017: First Edition

Revision History for the First Edition
2017-04-12: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Understanding the
InnerSource Checklist, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://oreilly.com/safari

Table of Contents

Foreword. v

1. Why InnerSource?. 1
Our Audience 3
What Does Open Source Have That I Don’t Have? 3
Open Source Today 4
Open Source’s Future in the Commercial World:

InnerSource 4
A Brief History of InnerSource 5
What Lies Behind Open Source Practices 6

2. What InnerSource Is and Isn’t. 9
We Have GitHub Enterprise, So We Must Be InnerSource! 10

3. The Most Important Role, and the First Step: Trusted Committer. . 15
Defining the Role 16
Refining the Role 17
Immediate Benefits 18
Rewarding TCs 18

4. Passive Documentation and the Need for Findability. 21
Creating Passive Documentation 21
“Did You Read the FINE Manual?” 22
Findability 23

iii

5. Creating Good House Rules for Guests: Writing Contributing
Agreements. 25
What Is a Contributing Agreement? 26
Mi Casa Es Su Casa 27
Win/Win 27
One Size Fits All? 27

6. Working Within the Enterprise: Understanding Planning. 29
Keep It Small and Simple, and Engage Your Staff 30
Planning and Product Specialists 31
Inclusion and Transparency 31
Planners Can Have an Impact on Processes 32
Results 33
Crossing the Gap from Planning to Developers 33

7. From Internal Silos to Internal Transparency. 35
Where Did Silos Come From? 35
What’s Wrong with Silos? 36
Transparency for Community Sourcing 36
Transparency Boosts Decision-Making 37
How Do We Break Down Silo Walls? 37
Findable Documentation Is Part of Transparency 38
Where Do We Still Need to Improve Transparency? 39
What Are the Limits or Pitfalls in Enterprise Transparency? 39

8. Looking Forward. 41
Creating an Industry Standard 41

9. Appendix. 43
The Actual Checklist 43

iv | Table of Contents

Foreword

PayPal first spoke about its InnerSource journey at OSCON North
America in 2015. We didn’t claim to have all the answers, just a will
to experiment and openly report on our findings as we went about
our journey to adopt open source methodologies within PayPal to
reduce engineering silos and increase cross-stack collaboration.

A key part of our InnerSource journey has been building a team
capable of designing tools and processes that can help us make this
cultural shift. Silona Bonewald’s experience with open source and
with product management along with her love of data science made
her the ideal person to implement InnerSource across all of PayPal.

Silona likes order. She makes checklists to ensure that she doesn’t
forget small details, but also to establish implementation norms and
streamline adoption of new ideas. She’s written this booklet to share
some of the thinking that went into our InnerSource Implementa‐
tion Checklist. We hope you enjoy it and benefit from it.

— Danese Cooper, head of
Open and InnerSource, PayPal

v

CHAPTER 1

Why InnerSource?

A group of us in the open source community feel strongly that we
can make work better by introducing and adopting open source
principles and processes to larger enterprises. This includes
attributes that benefit the company (faster development, better
cross-team collaboration, more documentation) and an ethos that
benefits the workers (mentoring processes, accountability, and a
supportive community).

It’s a big goal. We started an organization called InnerSource Com‐
mons to share information and ideas among organizations working
with InnerSource. We talk often about perfection being the enemy
of action. That’s one reason we focus on the smallest possible steps
to effect change.

At the Commons, we also believe that when companies fundamen‐
tally understand many of the methods of open source, they can be
confident and productive actors in the open source community.
InnerSource is a way to bring them in while respecting their limits.
InnerSource opens teams and departments within a company, but
does not release proprietary information. It has been shown to be
effective at reducing silos, increasing cross-stack understanding, and
even stimulating innovation.

In good open source tradition, we are writing this book to share
some of what we in the InnerSource community are doing to bring
open source tools and methodologies to the enterprise environment.
At the end, we present a checklist that quickly lays out the tasks that
different parts of an organization have. It also lets you see how far

1

http://paypal.github.io/InnerSourceCommons/
http://paypal.github.io/InnerSourceCommons/

1 More on this in Chapter 6.

your organization has come in implementing an InnerSource
project. Our implementation of InnerSource adds common-sense
steps as a recommended path, with a goal of “InnerSource-Ready”
certification for groups completing the steps.

The main point of this book is to find simple ways to encourage fun‐
damental changes to typical corporate behavior.

One of the great things about InnerSource is that it doesn’t need to
begin—in fact, probably should not begin—as a top-down mandate
from headquarters. Just one team in one department can make a few
small changes in the right places to see results. And, hopefully, other
teams will be inspired enough to follow.

Many InnerSource processes were born out of errors or problems.
In fact, one of our biggest strengths is our ability to learn from
errors—those we make, and those that others make and then share.
Others will help us learn if we let them. That’s one reason we
encourage transparency.

For example, people working on product integration often find it
easier to send a series of private email exchanges or hold meetings
among a fraction of the people planning the integration than to
bring all stakeholders into the process. Requiring all of those
involved to collaborate transparently has enormous payoffs,1 espe‐
cially if you do it in a way that can be archived (in a discoverable
location) so that other people can learn from it.

InnerSource is enabled by tools and processes, but it is also a change
to the culture. The biggest change is allowing mistakes, talking
about them, and learning from them.

This book is a true exercise within this premise. We are putting it
out in the open, rough edges and all, explaining lessons we’ve
learned along the way, and sharing the solutions we have found. It
will be posted on the InnerSource Commons site, where people can
comment on it and help it grow. We will print an official copy, of
course. But because we strive to live in the “Pull Request Culture”
we are creating, if you’re reading the hardcopy and see anything
wrong or feel the need to add more to the conversation, please con‐
tribute your feedback online.

2 | Chapter 1: Why InnerSource?

http://www.innersourcecommons.org/checklist

We understand that it can be difficult in a business environment to
share feedback freely when faux pas in brand management have
financial repercussions. At the Commons, we work under Chatham
House Rules (see the section “A Brief History of InnerSource” later
in this chapter) so that people can feel confident that nobody is
reporting on their involvement until they are ready to go public.
Likewise, with this book we have changed some names to protect
the innocent, so to speak.

We hope that as we go on this journey, you will see how taking
advantage of small changes can begin to make larger cultural change
a reality. And, yes, some serious change management techniques are
proposed here.

Our Audience
We strive to include something for everyone in this book. Develop‐
ers can learn what it’s like to be either a contributor or a Trusted
Committer (more on this role a bit later) who vets the contributions.
Product owners and product specialists can make large gains
through reuse, collaboration, and integrations. Planners will better
understand how to manage the changes that InnerSource brings and
will learn how helping teams negotiate the complexities of integra‐
tion and collaboration can reduce tribal knowledge and technical
debt. And, finally, upper management will find new ways to improve
employee satisfaction and to integrate new business units and
acquisitions.

What Does Open Source Have That I Don’t
Have?
Briefly, open source has flexibility, synergy across groups because of
transparency, a culture that fosters collaboration, and a combination
of standardization and easy-to-find documentation that greatly
improves the learning curve. Open source has developers that par‐
ticipate due to intrinsic motivations, an ethos of honoring mentors,
and a view of contributions as a gift, not a burden. Transparency
and widespread contributions lead to software that better meets the
needs of the users.

Our Audience | 3

2 Wayne Jackson, “The 2014 Survey: Marked by an Industry Shock Wave”, The Nexus,
June 20, 2014.

3 In Coverity’s annual static code analysis reports, most recently, the “Coverity Scan
Report”.

Open Source Today
Open source software has “won.” Every Fortune 500 company uses
or works on some kind of open source project. Sonatype, a major
player in the open source community, conducted a survey in 2014 of
large enterprises and found that “more than 90 percent of a typical
application is now open source components.”2 One major advantage
of open source software is that it has consistently shown a lower
defect density than the industry average.3

Open Source’s Future in the Commercial
World: InnerSource
But how do the strengths of open source help within a company?
Realistically, most companies cannot be strictly open source,
because regulatory and commercial requirements forbid them from
sharing their source code. This is where InnerSource comes in.
InnerSource is a method of applying lessons learned in the open
source software movement to companies that are developing soft‐
ware internally.

InnerSource can help corporations become better actors in the open
source community, while bringing the advantages of open source to
the corporate world. Our most important goals are the following:

• To help the enterprise learn how to improve collaboration
• To help the enterprise create cleaner code
• To reduce bottlenecks
• To facilitate integrations between teams

In most enterprises, it is difficult to make significant changes
quickly. Even when it’s possible, rapid cultural or process change can
be more disruptive than helpful. This goes double for when the
changes are mandated from the top without buy-in from the people
in the trenches. InnerSource works by starting with the smallest

4 | Chapter 1: Why InnerSource?

http://bit.ly/2o3vRR6
http://bit.ly/2o3g7O6
http://bit.ly/2o3g7O6

4 Specifically, Apache Software Foundation style.

steps possible to effect change, and by making meaningful compro‐
mises to adapt to circumstances. This minimizes disruption and
gives people a chance to see how effective it is before making larger
steps. In fact, just a single team in one department can effectively
adopt InnerSource.

A Brief History of InnerSource
Deciding to apply open source methodologies on an enterprise level
is neither new nor unique. Many people have worked on similar
projects for almost as long as open source has existed. It is a natural
decision because so many people enjoy working on open source
projects and want to bring that ethos into their work environment.
Many names have been used to describe this process of translating
open source to the enterprise, from “internal open source,” “enter‐
prise open source,” and “visual source” to “corporate open source,”
but few have succeeded for long. The term we are using was coined
by Tim O’Reilly more than 15 years ago. Originally, it was “Inner
Source,” but we removed the space between the words so that the
term is findable in a search.

InnerSource as a movement or method began with a conversation
among a group of us in the open source community who were inde‐
pendently working to bring the open source ethos to the commer‐
cial world. We created a consortium in true open source fashion4 to
create and maintain InnerSource definitions and standards. This
way, open source leaders are able to maintain the ethos and culture
of the true meaning of InnerSource, even in the sometimes-difficult
enterprise environment. One key element of this process has been
our fervent adoption of Chatham House Rule:

When a meeting, or part thereof, is held under the Chatham House
Rule, participants are free to use the information received, but nei‐
ther the identity nor the affiliation of the speaker(s), nor that of any
other participant, may be revealed.

The simplicity of the Chatham House Rule embodies what we are
working toward with InnerSource. Creating simple rules that are
easy to follow gives us maximum leverage to effect change. Trans‐
parency in a commercial environment has been a huge hurdle. This

A Brief History of InnerSource | 5

https://www.chathamhouse.org/about/chatham-house-rule
https://www.chathamhouse.org/about/chatham-house-rule

rule addresses commercial enterprises’ fear of collaboration with
potential competitors and allows us to be more open with one
another about what we are trying to do. It allows us to admit our
failures and to share information and complaints with our peers so
that we can work together as a group to quickly solve our problems.

The Chatham House Rules are a compromise that open source did
not need to make to survive, but that has been crucial to InnerSour‐
ce’s creation and growth. It is pleasingly symbolic that we are using
this tool of transparency and openness—along with a crucial dose of
privacy—to create our new definition of InnerSource. It perfectly
illustrates the dichotomy we are balancing.

What Lies Behind Open Source Practices
A long tradition of jokes and humorous stories show children or
unsophisticated people acting out things that they’ve seen other peo‐
ple do—for instance, building a nonfunctional plane from bamboo
in a cargo cult—without knowing why. The humor springs from the
absurdity of actions taken out of the original context where they
made sense. Unfortunately, too many practices adopted by busi‐
nesses from open source projects fail for the same lack of under‐
standing. What makes it even more difficult to adopt open source
practices intelligently is that many open source practitioners talk
about them enthusiastically without understanding why they
worked in the open source setting.

Most business documents stress how to do things, but not why. Busi‐
ness environments often move too quickly to solidify processes.
This report lays out the whys so that you set up the right environ‐
ment in which your new practices are likely to succeed. We put the
checklist for starting InnerSource at the end of the report because
we first want to give context and human stories, showing you why
we came up with the processes we did. Bringing InnerSource to
enterprises is a complex undertaking, and what we did might not
work for everyone else. We prefer to explain why we decided we
need a new rule and why a process works for us so that you can cre‐
ate your process—your own how—to fit your needs.

Of course, you can skip to the checklist in this book or at this book’s
website if you’re eager to move on. But we’ve made it easy to skim
the whys: Each chapter begins with a TL;DR (Too Long; Didn’t

6 | Chapter 1: Why InnerSource?

https://en.wikipedia.org/wiki/Cargo_cult
http://paypal.github.io/InnerSourceCommons/
http://paypal.github.io/InnerSourceCommons/

Read) that sums up a problem we found, the smallest possible step
to move toward a solution, and why that solution works.

What Lies Behind Open Source Practices | 7

CHAPTER 2

What InnerSource Is and Isn’t

TL;DR

Too often, enterprise culture wants to change the defi‐
nition of InnerSource to something more familiar. We
must help enterprise stakeholders create clear practices
and definitions in order to maintain the culture of
open source as much as possible while still highlighting
the benefits to the enterprise.

One of the major problems we have encountered when implement‐
ing InnerSource has been, at its root, a vocabulary problem. After
we completed several successful InnerSource projects, we noticed
that many people began using the word InnerSource in a simplistic,
degenerate manner. Probably the most damaging misunderstanding
was that InnerSource meant outsourcing work from a busy team to
another that presumably had more capacity. In general, it’s easy to
fall into the fallacy of thinking that effective processes are just about
following certain procedures or using certain tools, without regard
for the culture that makes success possible.

Discussing the problems caused by this vocabulary issue became a
bonding moment for all of us at the InnerSource Commons. Many
members of the Commons want to focus on the larger problems of
culture change, and the distorted definitions of Innersource were
emblematic of the problems they are fighting. InnerSource goes
much farther than simple processes or tools, and sometimes that
makes definitions more difficult to communicate in an enterprise
environment.

9

The vocabulary issue might sound minor, but we’ve found again and
again that it is vital, especially when introducing change, that terms
are clearly and explicitly defined and agreed upon. It is also impor‐
tant that the definitions are easy to find. This includes terms like
“InnerSource,” but also includes roles and responsibilities. Some of
the first steps toward InnerSource are to clearly and publicly define
standards, roles, and responsibilities.

We Have GitHub Enterprise, So We Must Be
InnerSource!

TL;DR

GitHub helps with code transparency, but doesn’t
actually change the typical enterprise silo-based men‐
tality. Without the processes we talk about in this
book, GitHub instead creates serious collaboration and
integration issues, which can turn into bottlenecks,
especially on critical codebases needed by many teams.

The idea that GitHub is all that’s needed to be InnerSource is a con‐
cept we fight against daily. Most people do not realize that it takes
much more than GitHub to find, create, and grow open source com‐
munities. The communities create the software, not the other way
around, but more often than not, large companies lack a sense of
holistic community.

InnerSource Is About Culture and Processes, Not Just
Tools
The first steps toward InnerSource must be to foster trust and
increase clear communication. This makes it possible for a sense of
community to grow and improves collaboration. But businesses
often lead from the how, rather than the why. We can’t tell them to
foster trust in their teams; that is too vague and can’t be expressed as
an action item. We fight the constant battle of process and hierarchy
versus agility and customer influence. So how do we work around
that? How do we make better decisions and collaborate more,
without spending more money? These are things that GitHub can‐
not answer but InnerSource can.

10 | Chapter 2: What InnerSource Is and Isn’t

It is true that using a tool like GitHub to make version control easy,
visible, and accessible is a step in the right direction. But we need to
think beyond tools and their advantages and flaws, and consider
people. Enterprises are made of people with their own fears, habits,
established patterns, hierarchy, and motivations, and they respond
to corporate politics as much as to technology. This is why each of
the checklist items focuses on some aspect of the human piece of the
puzzle.

A Parable: GitHub Without InnerSource
The first big problem we encountered when introducing Inner‐
Source was an increase in escalation up the management chain. We
like to call it the “Big Cheese Story” (see the following sidebar). At
its core, it is a story of fear. We believe it is unique to the corporate
environment and not the open source world. We found that this
story resonated with many of our participants in the InnerSource
Commons. The awesome part is that open source’s existing pro‐
cesses already had several pieces of the solution, though they had
not been put together before.

The Big Cheese Story
Once upon a time, there was a company that decided to embrace
InnerSource, so it dictated that all code was to be moved to GitHub
Enterprise. Because there was no cohesive version control before,
there was much rejoicing across the company. Now, the developers
finally had visibility to one another’s code! No longer would the
developers need to submit a change request to planning, and hope
it was accepted and scheduled some time in the next year. Visions
of seamless collaborations danced in developers’ heads!

An intrepid programmer decided to do a pull request on the big
codebase, and told her manager that she could write the necessary
change in a matter of weeks. Her Big Cheese was very pleased. So,
the intrepid programmer wrote the change and submitted the pull
requests and waited...and waited...and waited...until her Big Cheese
became very unhappy and asked why the changes had not been
added. The intrepid programmer replied that she had finished the
work and submitted the pull request, but the changes hadn’t been
accepted by the other codebase.

We Have GitHub Enterprise, So We Must Be InnerSource! | 11

So, her Big Cheese went to the Big Cheese that owned the other
codebase, and asked him to force one of his groups to accept those
changes. After all, there was now a big backlog waiting to go
through! The Big Cheese of the codebase agreed and ordered some
poor individual in his group to accept those changes. But that indi‐
vidual didn’t like how the intrepid programmer wrote the changes,
because they were not “how things are done.” They were written in
a different style, used a different test scheme, and maybe didn’t take
advantage of an existing module. Thus, the second programmer
rewrote the entire change before adding it to the codebase.

No one learned anything. No documentation was created. And now
everyone hates InnerSource because it creates bottlenecks and
makes programmers look difficult to the Big Cheeses. Plus, the
product owners are frustrated because no one has included them in
the process.

Breaking Down the Big Cheese Problem
At first, we were surprised by the Big Cheese problem, because we
knew that the more code that other teams can see into, the better
they can understand the pieces they are integrating with and/or
reusing. But we found that just having the code visible doesn’t auto‐
matically lead to collaboration, especially in an enterprise environ‐
ment. The incentives are different from the open source
environment.

First, most of the code had previously been developed in silos. This
meant that teams had undocumented styles, structures, and practi‐
ces that outsiders couldn’t know about until they submitted code
that could not be accepted by the maintainers. Beyond that, there
was a siloed culture that encouraged people to talk only to people in
their own group and to use language that outsiders couldn’t under‐
stand. This often happens in complex structures. I’ll cover the
organizational aspects later in this booklet.

If you do not understand the underlying architecture of the full
stack, especially an older one with poor documentation, making
silos is a normal response. It is easier to understand and take owner‐
ship of only your component. This is the piece you have the most
control over. However, this method doesn’t lend itself to an atmos‐
phere of collaboration, and can increase complexity and discourage
reuse.

12 | Chapter 2: What InnerSource Is and Isn’t

Because of this complexity, potential collaborators didn’t want to
contribute until the pain from lack of integration was more painful
than the fear of contributing. And the owners of the codebase were
loath to accept responsibility for code that was not their priority and
was written by someone not on their team. This resistance to collab‐
oration resulted in a constant stream of escalations up the leadership
chain. It turned GitHub into a bottleneck, especially for high-
demand codebases, which tend to be high risk. Consequently, the
code that the most people needed access to became the most diffi‐
cult to contribute to.

We found that contributors were often inspired to write pull
requests for the changes they needed in other codebases. But the
codebase hosts were not accepting their pull requests, mainly
because it meant extra work and responsibility for them. It became
all risk and little gain.

We had to go back in the history of open source to find answers to
these cultural problems. Then, we had to figure out how to make the
solutions match enterprise structures. And we had to simplify the
solutions so that they could be more universally adopted. I’ll explain
our solution in Chapter 3, The Most Important Role, and the First
Step: Trusted Committer.

More Communication Pitfalls
Communication in a siloed culture presents problems that are very
different from those in a traditional open source environment. In
particular, planning is significantly different. Two weeks before the
beginning of my employment at PayPal, several teams submitted
their feature-level integration requests to one popular codebase as a
part of their quarterly planning. The core team took those stories
and rewrote them to fit the current construct of their codebase, with
no involvement of the submitters, and then sent them back to the
external teams. Near the end of the quarter, many team leads came
to the InnerSource team with the rewritten stories, complaining that
InnerSource was really just “conscripted code.” They felt like they
were being conscripted to do another team’s work. They did not
realize that the code they were being asked to produce was actually
the changes needed to complete their own integration requests.
Confused, we sent them back their original requests and showed
how the new stories were actually derived from their original stories.
This is when we learned that the external teams had not been

We Have GitHub Enterprise, So We Must Be InnerSource! | 13

involved at all in the rewrite. Clearly, this was a major communica‐
tion failure! For the next (and all subsequent) rounds of planning,
we made sure all teams were present for the negotiations and
rewrites of stories. After this communication problem was solved,
we made significant gains. An order of magnitude of code was
accepted through pull requests, and external stories that had been
on backlogs for years were cleared.

We also had an issue with teams creating significant pull requests
against codebases with little to no warning to the codebase owners.
Of course, in an enterprise environment, such a significant expendi‐
ture of resources without planning or communication too often
became a battle of the Big Cheeses.

We needed to create a defined list of proven practices based on our
experiences. We could see that better communication and well-
defined expectations across teams was absolutely necessary. Chap‐
ter 6, Working Within the Enterprise: Understanding Planning
presents an explanation of the steps we’ve taken toward a solution.

14 | Chapter 2: What InnerSource Is and Isn’t

CHAPTER 3

The Most Important Role, and the
First Step: Trusted Committer

TL;DR

• For projects with any level of risk, you need to
have a Trusted Committer. Define the role’s
responsibilities clearly, based on the level of risk.

• Trusted Committers shift back and forth between
coding and Trusted Committer responsibilities.

• The Trusted Committer role is difficult, and you
need to reward those employees who deserve and
accept the role.

• The rewards to the enterprise are great: better
integrated code, better code reviews, faster pull
request (PR) turnaround time, clearer knowledge
for refactoring, more documentation with less
pain, and bottleneck reduction.

In the previous chapter, we described some of the cultural problems
we’ve encountered. Codebase owners must accept pull requests, or
they create bottlenecks and escalations up the management chain.
External teams must learn and conform to the style and standards of
the codebase to which they are contributing, or their contributions
must be extensively rewritten. And when codebase owners and
external contributors don’t work together, nothing gets better and
everyone ends up discouraged.

15

Many of the problems stem from the fact that developers in the
enterprise environment are often unwilling to dedicate time to
reviewing and accepting pull requests or mentoring developers in
other areas. And who can blame them? They typically have assigned
tasks and goals that are specific to their own project, not to other
projects that happen to touch their codebase. In addition, most peo‐
ple are disinclined to accept responsibility for something they have
not written.

But, for InnerSource to work, some developers must take on respon‐
sibilities outside of their silos, so we created a new role with defined
responsibilities and called it the Trusted Committer (TC). This is the
most fundamental change we have implemented so far, and it is cru‐
cial to making InnerSource work. In fact, it is step one in its imple‐
mentation.

Defining the Role
The TC has the following list of responsibilities (each bullet point
helps the TC’s team to better communicate and collaborate with
other teams):

• Write and maintain the rules for contributing to the codebase
• Review incoming code (pull requests)
• Mentor contributors from other areas
• Merge pull requests
• Take the lead on refactoring and modularization
• Participate in discussion lists
• Send announcements
• Watch for and suggest opportunities for collaboration

We should point out that in the open source world, many groups
have independently evolved a similar role. We specifically borrowed
from “The Apache Way”, a tool developed by the Apache Software
Foundation. These roles are assigned to people who have shown a
high level of dedication to a project. TCs are ultimately responsible
for the codebase, and are often gatekeepers of the code. The level of
power in these roles often has a direct relationship to the amount of
risk. For example, the Linux kernel is widespread and high risk, so
the Linux kernel has divided its version of the TC role into two lev‐

16 | Chapter 3: The Most Important Role, and the First Step: Trusted Committer

http://theapacheway.com
https://www.apache.org
https://www.apache.org

els, Janitors and Mentors. On the other hand, Node.js modules are
very low risk. The community might not embrace a new module
after vetting it, but new modules can’t break anything, so there is no
TC role. Anyone can publish a Node.js module with npm.

Refining the Role
After we had a defined role for the TC, we found a new problem:
developers didn’t like the role, because they were afraid of getting
too far away from the code; they didn’t want to lose coding time.
They also struggled with prioritizing between coding and TC tasks.
Plus, it was costly in time and attention for them to switch too fre‐
quently between those tasks. It made it difficult to get into the cod‐
ing zone. To solve this issue, we considered removing programmers
from active coding and assigning them the TC role as a full-time
job. But this came with its own problem: we agreed that when peo‐
ple stop contributing code themselves, it becomes increasingly diffi‐
cult for them to review code, especially integrations. Not to mention
that it made programmers depressed because they would no longer
be doing the kind of work they loved and entered the field to do.

Our solution is to have the TCs work with the product specialists to
create a rotation schedule for themselves. They publish their sched‐
ules for other teams to see, in order to manage contributor expecta‐
tions. We also find it helpful to list each TC’s specialties in the
schedule so that the contributors know when someone with the
appropriate expertise will be available to help them. It was also
important to create new reward structures for the difficult and criti‐
cal work done by TCs, a process I’ll describe later in the section
“Rewarding TCs.”

In our experience, the number of TCs per project varies greatly. In a
high-risk project with about 30 developers, we ask that six program‐
mers be assigned to the TC role. At any one time, half of them
actively work in the TC role, reviewing code and mentoring, while
the other half actively code. They switch roles at the end of every
two-week sprint. This has been ideal for the TCs, because two weeks
is a good solid length of time to either really get into coding, or to
settle into mentoring and documentation.

In our lower-risk projects like tooling, a single TC works on 10
repos or more. Most developers are very eager to mentor contribu‐
tors on their toolsets. This is ideal for helping teams across enterpri‐

Refining the Role | 17

1 GitHub uses the term PR, as do several other tools. Companies not using these tools
might call the same thing problem reports, change requests, or tickets.

ses figure out how to better standardize their toolsets because
everyone is welcome to contribute. The main suggestion we have for
those TCs is to have office hours so that they can maintain blocks of
time to get (and stay) in the coding zone.

Immediate Benefits
Assigning the code reviews of PRs1 to the TC role greatly accelerated
the turnaround on the PRs and increased the level of code reviews.
Plus, we found that TCs used their mentoring time to create some
wonderful documentation for the next big refactor of code. The lead
for one of the major architectural reworks said that using Inner‐
Source helped his team really understand how to significantly refac‐
tor the codebase. It also greatly decreased the amount of interrupt-
driven coding from external bug fixes because those were also
addressed in the bug fix PRs.

The documentation was created semi-painlessly by archiving public
mentorship discussions between the TCs and contributors, and
making them easily accessible in a context-relevant location in the
codebase itself. This meant that the time spent on mentoring, valua‐
ble in and of itself, served double duty. We call this passive docu‐
mentation, and we discuss it in more depth in Chapter 4, Passive
Documentation and the Need for Findability.

Rewarding TCs
We found it important to work with HR and management to ensure
the TC role is recognized formally. This solves two problems: devel‐
opment wins because they are reassured that management must
respect the code review process, and no more Big Cheeses forcing
code changes! The enterprise wins because the new role gives a path
to promote programmers without taking them away from coding,
which is what they do best and often love the most.

The TC role illuminates a developer’s advanced skills in mentoring,
deep knowledge of architecture, and best code-review practices. We
have found the TC role to be a difficult one, and companies need to

18 | Chapter 3: The Most Important Role, and the First Step: Trusted Committer

determine how to properly reward those dedicated staff that take on
the additional responsibilities.

We are enhancing our promotion path to Fellow for developers to
reflect this complexity. This allows us to reward the “full-stack”
developers we are creating and allows promotion without having to
move to management roles that some developers find to be tedious.
We get to keep the programmers that really understand the various
codebases and encourage them to help refactor and reduce technical
debt.

Rewarding TCs | 19

CHAPTER 4

Passive Documentation and the
Need for Findability

TL;DR

• Passive documentation is crucial for mentoring
and capturing tribal knowledge. The team takes a
communication hit at the beginning, but the
increase in velocity more than makes up for it.

• You can accelerate passive documentation by
rewarding both the writers and consumers of the
document.

• Passive documentation must be findable to be use‐
able. Sometimes, this means that you will need to
manually cross-tag between siloed datasets.

Passive documentation is the record of the documentation we create
every day while communicating openly. It is a great way to get tribal
knowledge out of silos and into a format that is archival and finda‐
ble. As an added bonus, it is typically kept with the project or the
code that it documents, thus it is in an easy-to-find, context-relevant
location.

Creating Passive Documentation
Passive documentation consists of written information that was pro‐
duced not specifically to document for the future, but to explain

21

something in the present, as it is needed. For example, it often
includes the following:

• Conversations that the Trusted Committers (TCs) have while
mentoring a contributor who is learning how to integrate with
her codebase

• Conversations the product owners have when they are explain‐
ing their priorities to one another, or arranging them

• The connection between a piece of the code and the project sto‐
ries about the code, and the live conversations about both

At first, the most difficult part is persuading people to have these
conversations more openly. They tend to start out wary of creating a
lasting reference document on the fly. We found that when people
realize that they are not writing formal documents, but are simply
capturing mentoring conversations, the resistance dissipates. And
the benefits of the rapid increase in documentation are quickly obvi‐
ous to all.

To be captured in passive documentation, conversations need to
happen in a written format. Common written formats include com‐
ments in a pull request, a tagged conversation in a public Slack
channel, a comments page in a wiki, and a tagged email in a discus‐
sion group. In the open source world, we often say that conversa‐
tions that don’t happen publicly on the email list or wiki aren’t “real.”
We are working to change the culture internally to be the same. If
there is an important discussion in person, at the end of it one per‐
son always commits to creating a written record of it. They do this
by writing the discussion up in an email that all parties can approve,
and then posting the write-up to the larger community.

“Did You Read the FINE Manual?”
We found that after the TCs had answered a few easy questions pub‐
licly on pull requests, the velocity of the next contributor’s pull
request immediately increased.

Diligent contributors search the documentation before asking for
help, or even writing their pull requests. In our case, we store this in
GitHub, and because everything is in GitHub, there is little ambigu‐
ity about where to look. We encourage the TCs to refer contributors

22 | Chapter 4: Passive Documentation and the Need for Findability

back to previous conversations when they do not incorporate previ‐
ous advice in their pull requests.

We are working on ways to reward these public conversations inter‐
nally. We are creating dashboards that highlight when someone has
written especially relevant documentation. And we allow TCs to
reward contributors who do their research first. Trust me, the TCs
will quickly learn who follows directions and will prioritize their
pull requests first!

Findability
In the open source world, when you want to find out how to do
something, you simply Google it. In the corporate world, finding
information is much more difficult. Most information is locked
away in different software and datastores that might or might not be
searchable. Often the information in these applications is locked
down by default, because that seems safer. But in the long run it is
very damaging to a company. Locking information away makes
onboarding a new employee a difficult process, and it makes inte‐
grating a new acquisition almost impossible. Moreover, it invites, or
even encourages, an atmosphere of tribal knowledge.

Sometimes, those difficulties are created by the tools themselves
when they have a bad or nonexistent search function. Sometimes,
there are just so many tools being used that aggregation becomes an
issue. Too often, problems are aggravated by pricing issues that force
the company to shell out additional fees to enable access for all
users.

But documentation is only useful if people can find it, so this is a
really important problem to solve. Many of our teams have begun
requiring cross-tagging spanning application silos in order to enable
manual searching. For example, we have had several teams decide in
their contributing agreement that they will not even consider a pull
request that does not have a searchable tag of some sort, for exam‐
ple, a JIRA number for a bug fix, or a Rally story number for a
feature-level pull request in GitHub. This is a huge help when some‐
one needs to manually search across multiple locked-up datastores,
but it isn’t ideal, and it requires developers to be quite diligent.

We have begun creating tools to assist in finding and sharing infor‐
mation. We created (and open sourced!) RallySlack. When someone

Findability | 23

https://github.com/paypal/rallyslack

is on Slack, RallySlack automatically pulls up all of that individual’s
Rally stories to make it easier to find and tag a Slack conversation.
With RallySlack, users don’t need to look up or memorize Rally
story numbers. We are developing a similar tool for GitHub to help
with tagging Rally story numbers in pull requests and issues. Even‐
tually we hope to open source this tool, as well.

24 | Chapter 4: Passive Documentation and the Need for Findability

CHAPTER 5

Creating Good House Rules for
Guests: Writing Contributing

Agreements

TL;DR

• Trusted Committers (TCs) are responsible for
writing contributing agreements to explain house
rules to contributors (e.g., code conventions and
dependencies). Contributing agreements are liv‐
ing documents.

• Contributors need to be good houseguests and
read the agreements (and any other findable doc‐
umentation) before contributing. The better they
groom their contribution to match the contribu‐
ting agreement, the greater the velocity of accept‐
ance.

• Management needs to support the TCs on these
agreements.

• Be careful when standardizing agreements
because this leads to less ownership by the TCs.
Complex agreements can prevent contributions
and should be reserved for high-risk projects.

TCs cannot be forced to accept and take ownership of broken code,
code without proper tests, undocumented code, or even code that

25

doesn’t meet their style standards. Contributing agreements are a
way to formalize the responsibilities of the developers on the origi‐
nating side of the code.

What Is a Contributing Agreement?
The TCs write and own their contributing agreements. A contribu‐
ting agreement is a device that specifies the house rules to let con‐
tributors know what is required in order for the TC to accept a code
contribution. Contributing agreements are viewable by everyone in
development. They must have the TCs’ names, contact information,
and schedule. After that, the content is up to the TC. It will likely
include some of the following:

• The authoring TC’s specialties
• Community guidelines
• Code conventions
• Testing conventions
• Branching conventions
• Commit-message conventions
• Steps for creating good pull requests
• How to submit feature requests
• How to submit bug reports
• How to submit security issue reports
• How to write documentation
• Definition of done
• Dependencies
• Build-process schedule
• Sprint schedule
• Road map

It is very important for the TCs to be able to invoke these agree‐
ments for protection. If another team’s code contribution does not
meet the receiving TC’s specifications, the TC needs to be able to
point to the contributing agreement to explain exactly why the code
is being rejected. This helps immensely to minimize corporate poli‐
tics and escalation issues.

26 | Chapter 5: Creating Good House Rules for Guests: Writing Contributing Agreements

Mi Casa Es Su Casa
The contributing agreements are also crucial in managing a contrib‐
utor’s expectations. The metaphor we use is that of house rules for
guests. Everything goes more smoothly if hosts communicate their
expectations to their guests, instead of assuming that everyone has
the same standards. Someone with a nice house with many breaka‐
ble things and a very organized kitchen will have different house
rules from a person who lives in a comfortable mess with cat-
scratched furniture.

And hosts should warn guests about quirks in their house, like a cir‐
cuit breaker that trips if someone tries to run the microwave and the
dishwasher at the same time. The contributing agreement is the per‐
fect place to list the house rules and pitfalls of your codebase. And,
like clearly explained house rules, it can prevent damage, misunder‐
standings, and hurt feelings.

The metaphor extends to contributor behavior. Good guests follow
the house rules, of course, but they also tidy up; that is, they help fix
bugs or refactor code. And a great guest brings a bottle of wine! A
great codebase guest might contribute a feature or fix that everyone
likes and wants.

Win/Win
Most contributors quickly realize that the more closely their submis‐
sions adhere to the contributing agreements, the faster those sub‐
missions are accepted and committed. Also, contributors know that
when they see a more permissive agreement, there is less risk in sub‐
mitting changes.

One Size Fits All?
In the open source world, different groups have different rules for
contributions. Most of the differences are risk related. The Linux
kernel has very strict submittal guidelines and processes that go far
beyond a simple contributing agreement. On the other hand, agree‐
ments for Node.js modules are very permissive; they mostly ask that
people do a search to ensure that they aren’t duplicating someone
else’s effort.

Mi Casa Es Su Casa | 27

This diversity is very similar to the variety of projects in an enter‐
prise. We all have certain core projects that could topple the busi‐
ness if they fail, and these projects require strict contributing
agreements. But we also have tools that we would like to standard‐
ize, and this is a much lower-risk activity. The toolset teams should
have the flexibility to have simpler contributing agreements to lure
people into collaborating. Often, these less-risky codebases can be
safe places for contributors to learn how to participate in Inner‐
Source projects.

Creating the contributing agreements is a balance between safety
and participation. A short, easy agreement indicates that you wel‐
come contributions and are willing to mentor people through the
process of contributing. A longer, more complex agreement can
convey difficulty, risk, and the fact that contributors need to pass
several goals before their code will be accepted.

Some groups have tried to standardize one contributing agreement
across the entire company. This is a pretty natural reflex for large
enterprises. But we have fought against this because a company-
wide agreement takes ownership away from the TCs, costing the
company their buy-in, and eliminates the flexibility just outlined.
Instead, we create templates as a starting place for TCs (such as the
list in “What Is a Contributing Agreement?” on page 26), adjusted
for various levels of risk and complexity. We also ask that TCs revisit
and update their contributing agreements after a retrospective or
when new TCs are assigned to the codebase. It is vital that contribu‐
ting agreements remain living documents.

28 | Chapter 5: Creating Good House Rules for Guests: Writing Contributing Agreements

CHAPTER 6

Working Within the Enterprise:
Understanding Planning

TL;DR

• Transparency needs to be a part of the planning
process. Creating internal transparency has led in
our experience to more than an order of magni‐
tude gain in external code acceptance.

• Create formal processes to work within the enter‐
prise environment. Formalizing processes keeps
everyone on the same page.

• Transparency in planning helps because if the
employees do not understand why decisions are
made, they cannot propose corrections to the
implementation. Top-down management is a
complex process that rarely works. Open collabo‐
ration scales better.

The biggest difference between InnerSource and open source is the
business structure and its constraints. Working within an enterprise
means a constant pull of hierarchy and power structures that are
often contrary to the basic ethos of transparency and individual
agency that is key to open source. Yet, open source has much to offer
the business world. So how do we adapt to the business environ‐
ment without diluting the fundamental aspects of open source?

29

Keep It Small and Simple, and Engage Your
Staff
Our biggest successes have resulted from finding and using a key
point of leverage within the existing structures in the enterprise. We
review current processes and find places to modify them in small
ways to move incrementally toward InnerSource. We work with the
business environment’s desire to work with hows and not whys, and
simply tell them explicitly how to modify processes to improve out‐
comes, without going into lectures about transparency and owner‐
ship. It is best to make the changes as simple as possible, both to
encourage adaptability and to avoid triggering the resistance large
organizations can have to change.

For example, our written process for creating contributor agree‐
ments is very small and simple with few requirements: the agree‐
ments are owned by the Trusted Committers (TCs), they are
viewable by other teams, and they contain the TCs’ contact informa‐
tion and availability. Other than the contact information and sched‐
ule, we do not dictate the content of the agreements at all. Of course,
we do encourage and expect them to contain much more informa‐
tion! And problems with a guest contributor become the ideal learn‐
ing experience to trigger additions or changes to the contributing
agreement. It’s kind of like when you stay at someone’s house, and
the host has a rule of no loud music after 2 a.m.; you know that
someone before you must have played loud music at 2 a.m.

A crucial part of the TC process is that the employee who will be
most affected by the change is given more power (and more respon‐
sibility) to manage that change.

These simple requirements, plus the rule that TCs are completely in
charge of accepting or rejecting code changes, are relatively small
and unalarming changes to the InnerSource process. But look at the
results:

• The TCs have a huge incentive to fully participate in the new
process.

• Better communication and documentation begins as soon as the
agreement goes beyond contact information.

• The explicit expectations laid out in the document lead to better
collaboration.

30 | Chapter 6: Working Within the Enterprise: Understanding Planning

• Code changes move more quickly, leading to a positive feedback
loop.

• As more code changes come in, the TCs do more mentoring,
which creates more documentation.

• The TCs become more deeply familiar with their codebase and
its external impact.

The minimal requirements allow the teams to adapt the process to
their own needs—a major tenet of open source—and lead to the
InnerSource goals of better collaboration, fewer bottlenecks, better
integration, and, almost certainly, cleaner code.

Planning and Product Specialists
After our success in improving integration with TCs and contribu‐
tor agreements, we knew we had to create something similar to
smooth the planning process. The product specialist role, which
monitors all aspects of the product lifecycle, needs to work on
breaking down silos between teams and products, and to see how
these products can integrate with others in the company.

Product specialists need the ability and knowledge to properly nego‐
tiate and prioritize features across teams. But, we have found that
even though people working on code or product integration know
they need to sit down and discuss things with the other teams
involved, they don’t usually make time for the necessary meetings
unless they’re pushed. Anything not on the schedule is easy to put
off. This results in poor communication, delays, and misunder‐
standings. The fix is a formal process change to force the necessary
meetings, with greater inclusion to ensure that the appropriate peo‐
ple are in the planning sessions, and greater transparency to break
down the silo mentality. We are working with our product special‐
ists now to improve public records of this process.

Inclusion and Transparency
Full inclusion in the planning stage of the process is crucial; all of
the teams must be at the table for the process to work smoothly.
Representatives from each team need to be present for the story
grooming process, not just the owners of the primary codebase. Dif‐
ferent teams often have different or conflicting priorities. Getting

Planning and Product Specialists | 31

planners from each team together in one room helps them negotiate
among themselves to get all the work done. Inclusion leads to
smoother collaboration.

Transparency during the planning process is also important. We feel
that it helps to reduce conflict. When a conversation is public and
intended to be archived, we find that participants often become bet‐
ter at considering the entire company when working out priorities.
It helps to break down the silo mentality.

Transparency in planning increased as a side effect of adding more
people to the planning meetings. More people are present for the
trade-offs and negotiations. Just as important is the small process
change we had already implemented, requiring that all relevant con‐
versations be a part of the passive documentation. This means that
everyone can review discussions in the future, and alters people’s
conversational strategies. Also, by creating passive documentation,
you can avoid information overload as people search more and
spam less.

Prioritization of projects and resources is usually done opaquely at
companies. The reasoning is rarely made public and is done behind
closed doors. This leaves employees to come up with their own nar‐
ratives to explain priorities. Again, we see that when a company
gives the how but not the why, employees cannot make adjustments
on the fly. It cripples their decision-making, and is a key element of
bad escalation processes.

Bringing transparency to the process gives employees the ability to
make corrections as necessary, because they understand the end goal
and will not blindly continue down a designated path that they
know will lead to the wrong outcome. In addition, making prioriti‐
zation and resource allocation more transparent reduces hierarchi‐
cally based fears of kingdom building, or the appearance of it.

Planners Can Have an Impact on Processes
We began with simple rules. For high-risk and high-demand code‐
bases, we found it necessary to formalize planning. The product spe‐
cialists worked with the TCs to add rules to the contributing
agreements requiring external contributors to file an issue request
before submitting a significant code change. “Significant” meant
using more than three story points in Rally. This requirement was

32 | Chapter 6: Working Within the Enterprise: Understanding Planning

the first step in creating a solidified process that requires the prod‐
uct specialists on both teams to meet and collaborate with one
another as well as the TC and contributor prior to a significant code
change.

Such structured meetings were not necessary for other codebases.
Instead, their contributing agreements generally ask potential con‐
tributors to contact the TC and product specialist in advance on the
listed discussion channels. Again, adaptability is key!

Results
Greater inclusion in the planning stages does create a resource prob‐
lem initially: scheduling meetings with large groups is difficult, the
meetings can run longer than anticipated, and every person pulled
into a meeting necessarily is putting off other tasks. But we saw ben‐
efits almost immediately. The teams understood the prioritization
process better, which improved our Agile process. And the change
velocity in the core team’s ability to accept external code was so large
that it more than made up for the time lost in planning, by a factor
of 10. And we were able to clear stories from contributor’s teams
that had been on the backlog for years.

Opening up the process by including more people and making it
more transparent also has an amazing effect on the teams’ ability to
cross-collaborate. This leads to more effective decision-making both
internally and across teams. We also found that by improving com‐
munication through passive documentation, eventually the meetings
became smaller as teams used clearer communication.

We did find that the increased communication required some exter‐
nal facilitation in the beginning. A key element was teaching the
product specialists to negotiate more effectively by always looking at
the win/win solution for the company. This stage was relatively
short; after things were ironed out between teams, collaboration
increased dramatically and little external help was needed.

Crossing the Gap from Planning to Developers
To our great satisfaction, the teams at PayPal really began to work
well together, doing some horse trading and some very complex
bargaining. One team’s product specialist even came up with a new,
simple process change that we have added to the InnerSource check‐

Results | 33

list: product specialists must create and own a file called HELP‐
WANTED.md. This file is where product specialists can
transparently post their backlog. Developers who are looking for a
project to work on will search the code repositories, but don’t usu‐
ally think to look into project management tools, even if they have
access. So, the HELPWANTED.md file is placed in the code reposi‐
tory. Again, findability is important!

Some well-done HELPWANTED.md documents have been gener‐
ated from the project management tools, complete with notes and
levels of prioritization. This really helps inform guest contributors
about other teams’ needs. Often, potential contributors can tell
which stories are similar to their own projects, so they choose which
ones they can help with the most. The HELPWANTED.md file is a
great addition to the win/win mentality. Contributors can and do
trade with other teams, fixing an item in the backlog in exchange for
moving their feature-sized code changes up the review list.

34 | Chapter 6: Working Within the Enterprise: Understanding Planning

1 Ipsita Priyadarshini, “All you want to know about Dunbar’s number”, visionteme‐
nos.com.

CHAPTER 7

From Internal Silos to
Internal Transparency

TL;DR

• Team divisions tend to create silos of information
that hamper decision-making.

• Transparency can be reintroduced through rules
about documenting activities and requirements
for meetings on important decisions.

Where Did Silos Come From?
British anthropologist Robin Dunbar has proposed a theory that a
social animal’s neocortex size limits that animal’s comfortable social
group size. Dunbar’s number suggests that humans are best able to
handle approximately 150 relationships in a larger sense, and tend
to maintain stronger ties to smaller groups of around 50.1 This maps
back to tribes and their sizes. Many in the corporate world have
noticed similar size limitations when creating organizational charts.
Silos are a natural extension of those hierarchical situations. They
also evolve out of specialization, and from these groupings tribal
knowledge is born.

35

http://bit.ly/2o3rsgZ
https://en.wikipedia.org/wiki/Dunbar%27s_number

2 https://en.wikipedia.org/wiki/Transparency_(behavior)

With silos, people do not need to care as much about consensus.
They make communication and permissions easier because they
divide people into smaller groups. And dividing people into
assigned groups can make accountability easier. If something goes
wrong with security, people can blame the security group.

What’s Wrong with Silos?
As you can guess, communication between the silos can become dif‐
ficult, and problems can cascade through the company. Communi‐
cating over a wall never has the same emotional impact on people.
Getting things right matters more when you know one of the cus‐
tomer representatives personally and you hear his frustration when
a bug you accidently created increases his call volume.

In the modern world of integrations and acquisitions, silos seriously
hamper cross-team communications. Silos make the world of per‐
missions a devastating morass of unproductivity as people swim
upstream to find the tribal knowledge locked away in the silos. In
really large enterprises, people attempt to diagram the convoluted
jungle paths of interactivity and permissions via road maps. This is a
losing battle because the vines continue to grow even as maps are
drawn.

Transparency for Community Sourcing
Hopefully, by now you are convinced that transparency in coding
has multiple benefits. But consider this, as well: transparency is a
core tenet in science and academia. It is a key element in scientific
rigor.2 We believe that it works within a company for the same rea‐
sons it works with academia. It improves collaboration, and empow‐
ers anyone within the company to see when a project is going off
track and help to fix it.

Many businesses are learning the value of transparent communica‐
tion with customers. Facebook, Twitter, and other forms of social
media empower customers to get issues resolved publicly. Busi‐

36 | Chapter 7: From Internal Silos to Internal Transparency

https://en.wikipedia.org/wiki/Transparency_(behavior)

3 https://www.theguardian.com/sustainable-business/rebuild-restore-recover-trust-business

nesses have the opportunity to increase trust by handling problems
effectively.3

Transparency Boosts Decision-Making
Many organizations are seriously hampered because people can’t
offer input to decisions that cross team boundaries. A staff member
will say, “I don’t know what’s really going on in that group, so I can’t
make a judgment.” The documentation and open meetings that this
report proposes as part of the InnerSource culture will go a long way
toward fixing this problem. People need three things to participate
in decision-making: information (which documentation provides),
access (which comes in meetings), and permission (which must
become part of the InnerSource culture).

How Do We Break Down Silo Walls?
If the problem with silos is that they impair communication and
lock up tribal knowledge, the solution is to create processes that
open communication channels and produce findable documenta‐
tion.

Luckily, we can do both with the same processes, discussed in earlier
chapters. All of the steps toward InnerSource are steps toward open‐
ing up the silos:

• Create new roles to take ownership of creating and maintaining
documents that explicitly communicate expectations and needs,
or assign this responsibility to existing roles. The roles should
go to people most directly affected by the changes.

• Create processes that require inclusive, in-person meetings dur‐
ing the planning stages of integrations that are openly docu‐
mented.

• Require discussions and announcements to use designated pub‐
lic channels.

• Make those channels accessible company-wide.
• Archive the discussions in a findable location.

Transparency Boosts Decision-Making | 37

https://www.theguardian.com/sustainable-business/rebuild-restore-recover-trust-business

There is a cost to making these changes. Projects might slow down
as some people move into new roles and others adjust to more
meetings and online discussions. But the benefits come quickly.

Findable Documentation Is Part of
Transparency
We as a society have become accustomed to using a search to find
what we need. Filing email into folders is becoming obsolete; why
spend time filing when you can just run a search? Yet finding neces‐
sary documentation in a company can feel more like a treasure hunt.
One of our big goals is to improve documentation, and a major
component of this is not just creating it, but making it findable. Yes,
documentation is an aspect of transparency.

Documentation in accessible and logical places becomes a major
driver of transparency and collaboration. Creating documentation is
usually a low priority and rarely has passionate champions, yet it
can drastically shorten learning curves, ease collaboration, and pre‐
vent misunderstandings. Fortunately, InnerSource, when done cor‐
rectly, creates extensive and findable documentation as a side effect.

As an enterprise transitions toward InnerSource, there is a time cost
to the extra communication that is required. But if the enterprise
first sets up passive documentation processes to capture this extra
communication, that extra communication is a huge gain for future
productivity. Learning from what worked and what didn’t is always
useful for organizations, but most enterprises make no real effort to
capture and share this knowledge. Sometimes, it is fear of liability,
but if the conversations are done in a public fashion, people will
already be aware of those repercussions and higher-quality conver‐
sations will ensue.

Look for ways to make passive documentation available to all levels
in the company, not just developers in GitHub, email lists, or Slack
conversations. Passive documentation reduces the barrier to non‐
writers sharing knowledge precisely when it is needed. And by hav‐
ing the immediate feedback that passive documentation creates,
questions are guaranteed to be answered well. Slack and other tools
that allow more communication across silos have been extremely
valuable in increasing collaboration.

38 | Chapter 7: From Internal Silos to Internal Transparency

Of course, there’s probably already some existing documentation
scattered across the company. Many of our member organizations at
the InnerSource Commons are looking at larger search solutions to
make it easier to open information across departments and tools.
Although their solutions don’t let people change or edit what they
find in search (they must to return to the tool that created the infor‐
mation), they can at least find out what is happening and to whom
to talk. Slack is proving very valuable in both facilitating and archiv‐
ing those discussions on a wider scope.

It is also important for the enterprise to make collaboration a real
priority. Communication costs will temporarily rise as the organiza‐
tion transitions. This is typical for in any change-management sce‐
nario. But communicating earlier during cross-team collaboration
creates large productivity gains. Companies spend millions and mil‐
lions on internal integrations and integrations of acquisitions. Hav‐
ing these conversations publicly facilitates the next acquisition or
integration.

Where Do We Still Need to Improve
Transparency?
Those of us doing InnerSource already have code transparency
through GitHub. We have taken the first steps to make planning and
communications more transparent, but we still need to find more
solutions in this area.

Often, tools themselves inhibit transparency across departments.
When most enterprise software charges by the user, it becomes
financially prohibitive to buy a user account for everyone in the
company. A solution is to look primarily at tools that allow the com‐
pany to become tools-agnostic through APIs. Many tools today have
APIs, so you can use tools like Zapier and IFTTT to connect them.

What Are the Limits or Pitfalls in Enterprise
Transparency?
There are hard limits to transparency in commercial enterprises,
especially for publicly traded companies and international compa‐
nies that need to worry about compliance issues with multiple gov‐
ernments. This is a significant difference from most open source

Where Do We Still Need to Improve Transparency? | 39

organizations. Another important pitfall is handling remote access.
Again, this is largely because of regulatory issues. When looking for
technological solutions, you must keep these issues in mind.

Some enterprise agencies do look to open source organizations to
help with global transparency when they are ready to become uni‐
versally open. But when wading through the difficulties of being
open within the company, while not violating laws about insider
trading, they are on their own.

Still, the push to recover lost tribal knowledge, combined with the
increased productivity and employee morale engendered by Inner‐
Source, is convincing many enterprises that the price of transpar‐
ency, even with all of these caveats, is a worthwhile endeavor.

There is also the topic of information overload and overcommuni‐
cation. This is why search is a key element. We want to transition
corporate culture from a push mentality, in which endless bulletins
are sent out, to a pull mentality, in which people are confident that
they will get the information they need when they need it via search.

40 | Chapter 7: From Internal Silos to Internal Transparency

CHAPTER 8

Looking Forward

During our journey, we have found a need for many tools. Some
help facilitate discussion and some help with standardization and
compliance; others help with measurement and reporting. Please
join us at InnerSourceCommons.org where we are working on the
open source versions of these tools.

One such tool is called Agora—for enterprise search. We are work‐
ing toward an open system in which employees can easily add in
diverse data sources. This will allow search across tools and
domains.

We also are discussing maturity levels at the Commons. The first
pass has been in regard to GitHub and GitLab metrics. But we
would like to measure reuse and collaboration across data sources.
However we can do this only if we first capture the data.

Creating an Industry Standard
We have created an organization called InnerSource Commons.
Currently, we have more than 50 members, most from enterprise-
sized organizations. One of our primary goals at the moment is to
create an industry standard. We are working on creating pattern
languages from stories that our members create.

We are spreading information in several ways:

41

http://innersourcecommons.org/tools

• We are working with O’Reilly Media to create books (like this
one) and training materials to help teach other people and their
companies about InnerSource.

• We have classes based on ones we’ve given at conferences, now
trimmed to fit in 30-minute segments.

• We have training materials on the wiki. If you have any feed‐
back or create any materials that you want to share, please con‐
tact us there or follow the link to our Slack chat channel.

InnerSource Pattern Language
One very large-scale project under way at the Commons is creating
a pattern language for finding solutions to problems. Leonardo da
Vinci looked to nature for solutions to difficult problems. When we
encounter a difficult problem, we look to an open source collection
of previously solved problems that have a pattern similar to ours. In
the pattern project, we create simple patterns that contain five ele‐
ments:

• A description of the problem
• The larger context around the problem
• The forces that must be considered in finding a solution
• A possible solution
• The new context that results from applying the solution

Thankfully, the many similar (and already documented!) patterns
in the open source world are making quick work of this project.

42 | Chapter 8: Looking Forward

http://www.innersourcecommons.org/training
http://www.innersourcecommons.org/patterns

CHAPTER 9

Appendix

The Actual Checklist
It’s easy to feel overwhelmed with the task of starting an Inner‐
Source project, much less taking your organization through the
transition to a true InnerSource or open source company. PayPal has
drawn a checklist from its own experiences and the experiences of
colleagues in other companies making the transition. We present it
here to help organize and focus what you need to do. Certainly, fol‐
lowing the checklist slavishly will not produce success. Every orga‐
nization needs to undertake investigations, discussions, and cultural
change in order to benefit from InnerSource. But keeping this
checklist in front of you can help reassure you that you’re making
progress.

This report was inspired by both the GNU Manifesto and Checklist
Manifesto. We hope to inspire you to take at least a small step
toward InnerSource and creating your own checklist and sharing it
with us. The Apache Way was an important inspiration for the team,
and you will spot similarities in this list.

• Readiness
— Personal

— Do you believe this is a viable strategy for your company,
or are you just doing it out of ideological commitment
and idealism?

43

— Do you understand the changes required to be successful
at InnerSource?

— Are you skillful at presenting ideas to others, listening to
their concerns, and finding common ground without
bias?

— Project
— Does this project matter to the company? Is it likely to

survive strategy changes?
— Appropriateness

— Is this project likely to be interesting to developers
outside the original development team?
— Is it currently or could it be used widely by other

teams in the company who depend on it?
— Will it benefit from being extended by outsiders

in ways that the original team could not antici‐
pate?

— Could the project benefit from having other teams
contribute bug fixes and refactoring work?

— Could outside developers contribute useful code or
suggestions?

— Would outside developers respond to appeals to con‐
tribute?

— Code maturity
— Is the project modular enough to make changes easy

and safe to make?
— Is the code well documented?

— Existing process
— Can releases be made frequently?
— Is continuous testing and integration in place?
— Is all of the code stored in a version control reposi‐

tory such as GitHub that makes branches, pull
requests, and integration easy?

— Team
— Are team members ready for the challenges of Inner‐

Source?

44 | Chapter 9: Appendix

— Accepting code and changes to their code from out‐
siders

— Being responsible for less-than-perfect code contrib‐
uted by outsiders

— Having outsiders see their less-than-perfect code
— Having to conduct conversations that are sometimes

difficult with outsiders about accepting and rejecting
their contributions

— Mentoring and/or learning to mentor contributors
— Do team members understand the requirements of run‐

ning an InnerSource project? (It helps if members have
participated on open source projects.)
— Creating and maintaining documentation for guest

contributors
— Willingness to participate in forums and answer

questions patiently
— Using forums, which provide a historical record

everyone can see, instead of hallway conversations
(optionally, using a scribe to make notes during live
meetings, just as long as all of the decisions and
explanations for those decisions are documented)

— Willingness to do code reviews of outside submis‐
sions

— Maintaining the bug tracker
— Taking a turn in the role of TC

— Have you chosen TCs?
— Do they understand their responsibilities?

— Write and maintain the CONTRIBUTING.md file
in GitHub

— Review incoming code (pull requests)
— Mentor guest contributors
— Merge pull requests
— Take the lead on refactoring and modularization
— Participate and answer questions on discussion

lists

The Actual Checklist | 45

— Send announcements
— Watch for and suggest opportunities for collabo‐

ration
— Do they understand the potential rewards (intrinsic

and job-related) of this position?
— Develop deeper understanding of the codebase
— Improve the quality of your team’s code
— Improve the quality of code within the organiza‐

tion as a whole with better integrations
— Learn and grow as a developer by seeing many

incoming code examples
— Understand how to better refactor and modula‐

rize code to encourage external contributions
— Develop interpersonal and leadership skills

through mentoring and negotiation with guest
contributors

— Have they been given leeway to do things not previ‐
ously in their job descriptions?

— Is time set aside in team members’ work schedules for
these new responsibilities?

— Are team members trained to handle these responsibili‐
ties?

— Is there a mechanism for making announcements that
anyone in the organization can follow and search?
(Examples: Slack, email)

— Is there a recorded mechanism for discussion so that all
Guest Contributor questions and internal team decisions
are searchable by incoming Guest Contributors? (Exam‐
ples: Slack, online forum)

— Company
— CxO-level executives

— Do the executives understand the purpose and value
of running a project as InnerSource?
— The value of spreading tribal knowledge across

the organization

46 | Chapter 9: Appendix

— The value of having teams remove their own
external blockers and bottlenecks

— The value of a more interconnected organization
— The value of having advanced team members that

have a deeper understanding of many arms of the
codebase

— How InnerSource encourages basic good practice
and helps develop and spread even better coding
and development practices

— How InnerSource increases the learning and
development of individual developers

— Are they willing to support flexible work require‐
ments and time spent on cross-departmental contri‐
butions?

— Can they accept experimentation, failure, and reposi‐
tioning?

— Are they willing to support a path for career advance‐
ment that does not require management?

— Does the executive team support the initiative?
— Are company goals and KPIs clearly stated and

shared?
— Are the company’s vision and mission relevant, up-

to-date, clear, respected, and followed?
— Human resources

— Are there rewards and criteria for promotions based
on InnerSource values?
— Rewards for people who contribute to projects in

other departments
— Rewards for developers who handle contribu‐

tions from other departments (TCs)
— Need path for advancement that respects community

role and does not require moving into management
— Organizational setup

— Central coordinating team
— Is the team set up?

The Actual Checklist | 47

— Is it ready to communicate with projects interes‐
ted in going InnerSource? Can it apply the crite‐
ria in this checklist to ensure that the project and
team are ready?

— How do projects register as InnerSource?
— Do staff members have time to contribute to outside

projects?
— Do staff members have resources to measure and

demonstrate gains and losses of teams?
— Can staff members choose what projects to work on

based on their expertise and motivations?
— Is there a meritocratic philosophy that can appreciate

good contributions from all corners?
— Developers

— Do developers around the company understand that
they can contribute to the InnerSource project?

— Do they understand the value of contributing to
other projects?
— Removing external blockers
— Building integrations with other tools themselves
— Seeing how other teams structure code and learn

from examples
— Do they understand the process for making contribu‐

tions to other projects?
— Joining the discussion
— Reading the contribution requirements
— Exploring and/or contributing to the Help

Wanted file
— Signing up for announcements

— Do they know how to use the tools?
— Version control
— Programming language
— Test development

— Do they know how to support their team’s role in
InnerSource?

48 | Chapter 9: Appendix

— Can they participate productively on forums?
— Answer contributor questions
— Describe the reasons for choices that have

been made in a way that is clear
— Respond constructively to feedback

— Can they participate in dialogs around reviews of
their code?

— Are they permitted to contribute to projects outside
their departments?
— Do they understand how to get support from

their product owners and managers?
• Repository

— Are ancillary resources set up, such as the following?
— Documentation
— Discussion forum
— Bug tracker
— Wiki

— Are the following files in place?
— README.md

— Project name
— Any earlier names and codenames for this project
— Project description
— Team lead and PM/PMO contact information
— Keywords for search purposes

— So that people can find this particular project by
name

— So that people can find this project by what it
does

— How to sign up for the announcement list
— Location of discussion forum
— Location of other repositories (Examples: JIRA, Rally,

Confluence)
— CONTRIBUTING.md

The Actual Checklist | 49

— Required
— Table of contents
— Names and contact information for TCs
— TC availability schedule

— Optional
— Community guidelines
— Code conventions
— Testing conventions
— Branching conventions
— Commit-message conventions
— Steps for creating good pull requests
— How to submit feature requests
— How to submit bug reports
— How to submit security issue reports
— How to write documentation
— Dependencies
— Build process schedule
— Sprint schedule
— Road map
— Helpful links, information, and documentation
— When the repositories will be closed to contribu‐

tions
— HELPWANTED.md

— Can be initially empty
— Can link to a forum where requests and offers are

posted
— Can contain a list of requests and offers

— GETTINGSTARTED.md
— Whatever a contributor might need to get the app up

and running to begin coding
— Can be filled in by an intern, or after some contribu‐

tors get started, based on feedback about what would
have been helpful to them to get started

50 | Chapter 9: Appendix

— Who reviews the documents in the repository?
• Tools

— Version control
— Continuous integration
— Testing

• Logistics
— Sprints
— Codeathons, especially for tools
— Education
— Testing
— Gamification
— Reporting

— Pull requests during recent period
— Number
— Size (in lines of code)
— Type
— Name of pull request submitter

— Baseline metrics
— Ongoing tracking

— Resources
— Costs

— Time
— Who sees measurements? Display to the community?

— Bug fixing
• Product owners

The Actual Checklist | 51

About the Author
Silona Bonewald has been a member of the open source commu‐
nity since the late ’90s, and is currently director of InnerSource at
Paypal.

	InnerSource Commons
	Copyright
	Table of Contents
	Foreword
	Chapter 1. Why InnerSource?
	Our Audience
	What Does Open Source Have That I Don’t Have?
	Open Source Today
	Open Source’s Future in the Commercial World: InnerSource
	A Brief History of InnerSource
	What Lies Behind Open Source Practices

	Chapter 2. What InnerSource Is and Isn’t
	We Have GitHub Enterprise, So We Must Be InnerSource!
	InnerSource Is About Culture and Processes, Not Just Tools
	A Parable: GitHub Without InnerSource
	Breaking Down the Big Cheese Problem
	More Communication Pitfalls

	Chapter 3. The Most Important Role, and the First Step: Trusted Committer
	Defining the Role
	Refining the Role
	Immediate Benefits
	Rewarding TCs

	Chapter 4. Passive Documentation and the Need for Findability
	Creating Passive Documentation
	“Did You Read the FINE Manual?”
	Findability

	Chapter 5. Creating Good House Rules for Guests: Writing Contributing Agreements
	What Is a Contributing Agreement?
	Mi Casa Es Su Casa
	Win/Win
	One Size Fits All?

	Chapter 6. Working Within the Enterprise: Understanding Planning
	Keep It Small and Simple, and Engage Your Staff
	Planning and Product Specialists
	Inclusion and Transparency
	Planners Can Have an Impact on Processes
	Results
	Crossing the Gap from Planning to Developers

	Chapter 7. From Internal Silos to Internal Transparency
	Where Did Silos Come From?
	What’s Wrong with Silos?
	Transparency for Community Sourcing
	Transparency Boosts Decision-Making
	How Do We Break Down Silo Walls?
	Findable Documentation Is Part of Transparency
	Where Do We Still Need to Improve Transparency?
	What Are the Limits or Pitfalls in Enterprise Transparency?

	Chapter 8. Looking Forward
	Creating an Industry Standard

	Chapter 9. Appendix
	The Actual Checklist

	About the Author

